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SOME APPLICATIONS OF STOCHASTIC DIFFERENTIAL
EQUATIONS TO OPTIMAL NONLINEAR FILTERIM}]'

by
W. M. Wonham

1l. Introduction.

A current problem in control theory is that of estimating the dyna-
mical state of a physical system, on the basis of data perturbed by noise.
Solution of the estimation problem is usually immediate if one knows the
probability distribution of the system state at each instant of time, con-
ditional on the data aveilable up to that instant. It is therefore of in-
terest to ask how this posterior probability distribution evolves with time,
and if possible to specify the dynamical structure of a filter (i.e. analog
device) which generates the posterior distribution when its input is the time

Tunction actually observed.

In the present report, filters of this type are defined by means of
stochastic differential equat.ions2 for the posterior distribution in which
the observed time function appears as a forcing term. Differential equations
for this purpose were introduced in 1960 by Stratonovich [1], who also in-
dicated their application to stochastic control problems [2]. When the dyna-
mical system under observation is linear and the noise is white Gaussian it
has been shown [3] that Stratonovich's equation can be solved formally to
yield the stochastic differential equation of the optimal (linear) filter.
When the function to be estimated is a Markov step process and the noise is
white Gaussian the optimal (nonlinear) filter equations were stated in [4].
The latter equations are discussed in more detail in sect. 3, below; they
differ from those of Stratonovich in a sense to be noted in the sequel. For
one example, discussed in sect. 3, performance of the optimal nonlinear filter
is evaluated numerically and is found to be substantially better than that of

the simpler Wiener filter.

1. This research was supported in part by the United States Air Force through
the Air Force Office of Scientific Research, under Contract No. AF 49(638)-1206,

and in part by the Natiomal Aeronautics and Space Administration under Contract
No. NASw-845.
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2. A brief review of stochastic differential equations is given in Appendix 1.
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In sect. 4, the equations of sect. 3 are generalized heuristically
to the case where the state space of the step process is continuous, and

in sect. 5 some tentative remarks are made on the form of the solutions.

Some parallel work on noisy observation of a diffusion process will be
reported by Kushner in a forthcoming paper [5].

2. Noisy measurement of an unknown constant.

The basic idea of a !functional? filter is illustrated by the follow-
ing simple estimation problem. Iet x ©be & discrete, real-valued random
variable with range of values Biy ey By and a priori probability distri-
bution {pj(o), j=1, ..., K} at t = 0. Suppose that one observes the

function

t

y(t) = xt + IOB(S)dW(S), t 20, (1)

3

where the function B is known to the observer,” and ({w(t), t 2 0},is a
Wiener process which is independent of x, with P{w(0) = 0} = 1. The pro-
cess y(t) defined by (1) can also be written as the solution of the stochastic

differential equation

dy(t) = x at + p(t)aw(t), y(0) = 0. (2)

Dividing formally by dt one obtains the possibly more famliliar version

Sr(t) =x + B(t)‘:’(t)) Y(o) = 0) (3)

where W represents Gaussian white noise. Since w is not differentiable
in the ordinary sense we shall use instead the differential notation of (2)
and interpret (2) as an equation of Tto's type (Appendix 1).

3. We shall assume that B 1s continuously differentiable, and bounded away
from 0 for t z O.
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Iet us now introduce the posterior distribution

pj(t) = P{x = ajly(s), Ossst), J=1, «oo, K. (k)
Evaluation of p j(t) is straightforward (see Appendix 2); the result ish'

v - 1 2 t -
p,(O)exple, [ B(s)2ay(s) - 3,2 J p(s)as]
0 o (5)

pJ(t) =

t t *
= p(O)explay foﬂ(s)'zdy(s) - 587 foﬁ(s)'2dsl

The stochastic integral in (5) is well-defined ([6] IX,§2). Now write

p(t) = [pl(t), ceey pK(t)] and consider the joint process {x, p(t), t = 0},
where we regard x as a fixed random variable with distribution

{p J(O), J=1, ..., K}. Since almost every w(t) sample function is continuous
the same is true of the p(t) sample functions (by [6] IX, Thm. 5.2). More-
over, it is easily seen (Appendix 3) that the {x, p(t)} process is Markov.

Our aim is to describe the evolution in time of the p J's by means
of a system of stochastic differential equations. Having verified the existence
of the limits (8) and (9) written below, one can apply to the Markov process
{x, p(t)} a representation theorem of Doob ([6] VI, Tam. 3.3). Alternatively,
since the p J(t) are known explicitly, it is more direct to apply a result
of Dynkin (Appendix 1 or [7], Thm. 7.2), and this gives

dpj(t) = mJ[t, x, p(t)lat + aJ[t, x, p(t)law(t), 3 =1, ..., K. (6)

The functions m, and o, in (6) have the interpretation

J J

m,(t, &, m) = lim E{pj(t+h) -pl(t) x = ¢, p(t) =7} (7)
S h -0 b 7

and

L, The qualification !with probability 1! on equalities between conditions.l
probabilities is to be understood.
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(o, (t+h) = 2, (8)1[p(t40) - p,(v)]
h

Ui(t: §, TT)O'J(t, §, TT) = lim E{
h -0

(8)

x =&, p(t) = 7}

i, j=l’ sy Ko

In Appendix 3 the limits (7) and (8) are computed from (5), using Dynkin's
formulas; the results are

my(t, x, 2) = B(t)“(x - X)(e, - F)p, (9)
oy(t, %, B) = B(t) (o, - X, (20)
(=1, «e., K), where
_ K
X = . 11
Rt (11)

Writing out (6) in full and noting (2), we obtain finally

dp.(t) = - B(t)X(t)[a, - X(t)Ip.(t)at +
J J J (12)

+B(8) " lay - X(4) Ipy(t)ay(e),
j=1, ..., K

The system of stochastic differential equations (12) is the desired
result. It can be interpreted as specifying the structure of a filter (or
ideal analog device) which continuously generates the posterior distribution
p(t) when the input is the observed function y(t). From a practical view-
point this interpretation might be useful when the function actually observed
is not y, but rather some approximation to the *'function®! § indicated in
(3). In that case formal division by dt in (12) yields a system of nonlinear
differential equations for the pj’s, in which ¥ appears as a forcing term.

This system of equations defines the filter.
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Example. It is worth emphasizing that the ordimary rules of integration
cannot be applied to the stochastic equation (12) in an attempt to regain
the explicit solution (5). To illustrate this fact let x have possible

. _ = — i = i
valves a, =+1, &, =-1 and let pl(o) = p2(0) =3 B=1. Since

pl(t) + pe(t) = 1 it is sufficient to consider
a(t) = p;(t) - py(t). (13)
From (11), x(t) = a(t); and fram (12) the filter is defined by
2 2
dq = - q(1 - ¢7)at + (1 - q)ay. (1)

On the other hand (4) yields the evaluation

o]
~~
ct
~~
il
r—-

<
~~
ct
j —
el
-
~~

and formal differentiation of (15) gives
2
dg = (1 - q7)ay. (16)

We observe that the first term on the right side of (14) is absent from
(16). The point is not only that stochastic differential equations of Ito
type cannot be manipulated by the usual formal rules (cf. [6] IX, §5) but
also that an analog device for generating q should be set up according to
the Ito equation (14), and not according to the 'formal' equation (16).5

It must be noted fimally that Stratonovich'®s procedure [1] applied to
this example leads to (16) and not to (1) (cf. [2], ea. (9)).

5. The Ito equation (14) is solved (Appendix 1) by replacing (14) by an
integral equation and constructing the solution gq by successive
approximations. The structure of the analog feedback device should be chosen
to model that of the successive approximation scheme. Whether or not physical
analog devices can actually be built to operate in this way on *white? noise
(i.e. wideband random inputs) is a question open to investigation.



-6

3. Noisy observations of a Markov step process.

Let (x(t), t =2 0}, be a stationary Markov step process with a
finite number of states (step levels) 81y eoey aK.6 Denote the transition
probabilities by

py3(B) = Plx(t + 1) =a,lx(t) = a,)
We assume that
l-vih+o(h), J=1 (h->0)
pij(h) = (17)
vy + o(b), JAi (r-0)

where the vij 2 0 are constants and

K
Vi= Zvij, i=l, ceey K. (18)

J=1
I
Iet the distribution of x(0) be {pj(O), J=1, ..., K}.
As in sect. 2, suppose that the process observed is {y(t), t 2 0} defined by

dy(t) = x(t)at + g(t)aw(t), t 20, (19)

where P(y(0) = 0} = 1 and the Wiener process {w(t), t = 0} is independent

of the x(t) process. Introduce the posterior probabilities
pj(t) = P{x(t) = ajly(s), 0=s =1}, (20)
j=l, esey Ko
As before, we seek a stochastic differential equation for the pj(t).

The appropriate generalization of (12) is obtained in Appendix U; the result
is

6. For a complete discussion see [6] VI, §1, where our v, v,, are denoted

by qi, qij‘ The x(t) process,can be defined so as to be sepaﬁable and
measurabley integrals such as fox(s)d.s are then well-defined random variables.




T

K
dpy(t) = [~ vsp (t) + 1§1v

1f1
_-De

- g(t) x(t)[a.J - i(t)]pj(t)dt + (21)

N jpi(t) lat -

+p(t)Play - X(t)Ipy(t)ay(e), =1, «uy K.

Eq. (21) can be interpreted as specifying the structure of an ideal
analog device for generating the p j‘s from the data, y. Comparison of
(21) with (12) shows that the only novel feature of (21) is the first tem
on the right side. This term is of the form of+[p]d.t where oz+ is the
forward operator of the x(t) process, and thus represents a change in p

due to the observer's a priori knowledge of how the x(t) process evolves.

We shall now discuss a simple special case of {21) in detail.

l

Example. Let B
[11]; that is,

const. and suppose that x is a ‘random telegraph signal!
‘ al=+l, a, = -1 (22)

[

| Vi=Vij=‘V, i,J=l,2.
|
|

The parameter v 1is the expected number of Jjumps of x(-) in unit time, Let

a(t) = py(t) - py(t). (23)

From (21) and (22),

- 2vqdt - p2q(1 - ¢9)at + pE(1 - qF)ay (2k)

dg

or equivalently

dq

[-ovq - 82(1 - ¢2)(q - x)1at + ~1(1 - a®)aw. (25)
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We shall evaluate the filter performance in terms of mean square

estimation error. Thus the optimal estimate of x(t) is

X(t) = E{x(t)|y(s), 0 ss =t}
= a,p,(t) + a_p,(t) (26)
= q(t).

Now consider the joint Markov process ({x(t), a(t), t = 0}, It will be

+
assumed that this process has stationary densities m—(q), ~l1s=gq s 1, de-
fined by

m=(q)dq = P{x(t) = + 1, aq(t) € (a, q + da)). (27)

Then the mean square estimation error is

1

1
o = l(l - a)°rla)aq + f l(l + q)®r (q)da. (28)

+
It remains to calculate the densities m—. By inspection of (25), the

stationary Kolmogorov equation of the ({x, q} process is

L52[(1 - )% -
- [5'2(11 - )1 - i) - 2va 75(a)] + (29)

+ vl (q) =7 (q)] =0

- +
where (') denotes d/dq. With the symmetry condition 7 (4) =7 (-q), (29) has
the unique solution

12(a) = c(1 ¥ q) Lexpl- 2m(1 - %)™1] (30)

where
c=[2 fwzl/ 205 _ 1)"1/2-2uzg,11 (31)
1
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and

2
p=pv. (32)
From (28), (30) the stationary error variance is then

o jo z-l/e(z + l)-3/2e-2“z‘dz
6 =

o . ()
J z-l/z(z + l)l/2e-a'lzdz
o

It is easy to show that 02 -0 as 4 -0, and that

“=1- @) +0wF) as pow (3h4)

The result (33) will be compared with the error variance of a Wiener filter
which is optimal for the same input. For the Wiener filter a standard com-
putation yields

Q
1]

2ul(1 + w2 | 1) )

1- (1111)-1 + O(p-a) as u - o,

Numerical results are given in Fig., 1. Since the nonlinear filter generates
the estimate defined by (26) it is necessarily optimal (with respect to error
variance) in the class of all filters which operate on the present and past

of the data y. Thus 02 = cw2 and in fact 02 is substantially less than

owe except when the noise level is very high.

4, Generalization to continuous state space.

The differential equations (12), (21) were derived on the assumption
that the state space of the x(t) process is a finite set. The following
is a heuristic generalization to a continuous state space. Let

{x(t), t 20} be a real-valued Markov step process with state space X,
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vhere X is a closed finite interval. Iet v(t), v(t, A) be defined for
¢ in X and A a Borel subset of X; the functions wv(+), v(+,*) are
assumed to be a ‘'standard pair' in the sense of Doob [6] VI, §2.6 In addi-
tion, v(*) is assumed to be bounded on X; the x(t) sample functions

are then almost all step functions [6]. In analogy to (17) one has

P(h: £, A) = P[X(t +h) € Alx(t) = £}

( v(g, A)n + o(n), £EdA (36)
L1 - w(e)n+o(n), A= (&)

As in sect. 3, suppose next that

dy(t) = x(t)at + p(t)aw(t), t =0, (37)
and introduce the posterior probability
p(t, A) = P(x(t) € Aly(s), 0 =s =t} (38)
Then inspection of (21) suggests the generalization
dP(t: A) = [- fAV(g) X - A)P(t) dﬁ) +
+ [ v(g, A)p(t, dE)lat -
X-A
~[B(t)™%(t) S [6 - £(t)Ip(t, ag)lat +
A
+[p(t) 2 6 - %) Ip(t, ag)lay(e). (29)
In (%9),
x(t) = [ ep(t, at), (40)
X

6. The functions v are denoted in [6] by aq.
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and A is an arbitrary Borel subset of X.

Just as in the case of a (finite-dimensional) Ito equation, (39)
might plausibly be interpreted by starting from the corresponding integral
equation, obtained by integrating both sides of (39) with respect to t,
and defining the solution as the limit of successive approximations. Une
like (12) and (21), however, the general equation (39) cannot readily be
interpreted as specifying the dynamics of a practically realizable filter
for generating p from the data Y. »

5. Sufficient statistics.

We have seen in sect. 4 that the stochastic differential equation
for the posterior distribution of x(t) cannot be used directly, in general,
to design an optimal filter. 1In practice, construction of the posterior
distribution must be reduced to the evaluation of a 'small' number of func-
tionals (sufficient statistics) on the observed function y. For example,
inspection of (5) shows that the K-dimensiomal stochastic system (12) can be
replaced by the l-dimensional system

do(t) = p(t)Cay(t), o(0) = O. (b1)

which generates the sufficient statistic

t
ao(t) = IOB(S)' dy(s). (42)

On the other hand the writer knows of no similar reduction of the system (21)
or of (39).

Even if a nontrivial sufficient statistic z(t) for the determination
of p exists, it may be impossible to write 2z as an explicit functional of
Y. It would be enough to know, however, that 2z satisfies a stochastic

differential equation
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dz = Cl(t’: z)dt + gz(t: z)dy (43)

where the functions gl, §2 are known; then in principle 2z could be obtained
as the output of an analog device set up according to (43). Thus the
'solution’ of an equation of type (21), (39) might take the form of a (known)
function of a statistic 2z which satisfies a (known) equation of type (L43).
The investigation of solutions of this type (if they exist) would be of con-

siderable interest.
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Appendix 1. Stochastic differential equations.

1. Since stochastic differential equations are not yet widely used in
engineering applications we summarize here some definitions anmd known re-
sults. For a detailed account the reader is referred to Doob [6] VI, §3,
and Dynkin [7], Chs. 7 and 11.

Iet {z(t), % = 0} be a stochastic process in K-dimensional
Euclidean space RK; we write z = (zl, ceey zK), where the z, are real-
valued, and put |z| = (IZ{Z ZiE)l/E‘ Iet (w(t), t =0} be a Wiener process
(Brownian motion process) in RJ,- that is, w(t) = [wl(t), ceey WJ(t)] where

the wi(t) are independent Wiener processes in Rl and, for t 2s z Q,

E{[Wi(t) - wi(s)][wj(t) - wj(s)] =t -8, J=1i;
, (k)
= 0, J F L.
(See [6] II, §9 for the definition of the Wiener process in RL).
The stochastic differential equation of interest here is written
dz(t) = mlt, z(t)lat + olt, z(t)law(t), t z O, (45)

where m is a K-vector and ¢ is a K X J matrix. Loosely interpreted,
(45) states that in a small time interval (t, t + dt) the vector z(t)
suffers a 'dynamical®' displacement m[t, z(t)]dt plus a random displacement
olt, z(t)law(t), where the latter is a Gaussian random vector with mean O
and covariance matrix olt, z(t)le*[t, z(t)]ldt (* denotes transpose).

Dividing both sides of (45) formally by dt one obtains
z = m(t, z) + oft, z)% (- = d/at) (46)

where W is a J-vector whose components are independent ‘'Gaussian white noise

processes?, The notation of (46) has been more common in the engineering
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literature than that of (45) but it is objectionable for two reasons:

(a) Almost all w(t) sample functions are nondifferentiable
almost everywhere, a fact which is intuitively plausible

1

if we note that E|jaw(t)|| is proportional to (dt)Zz.

(b) When applied to (46) the usual formal rules of integration
lead in general to results which are definitely incorrect.

This statement will be illustrated later.

2. The stochastic differential equation (45) does not specify the value
of a derivative. The equation can be defined by giving an explieit procedure
for constructing the solution, and then has meaning only insofar as this
construction can be carried out (cf. Gihman [9]). An alternative interpretation
of (45) due to Ito [8] is the following. Replace (45) by the stochastic integral
equation

t
z(t) = z(0) + [ mls, z(s)ldas +

. 0 (47)
+ [ ols, z(s)law(s).
0

The stochastic integrals on the right side of (U47) are defined ([6] IX, §2,
§5) under suitable restrictions on the (random) functions m and o. Ito's
construction of a z(t) process which satisfies (47) is carried out by
successive approximation; one sets z(0 (t) =0 arﬂ

t

2 6y _ 5(0) + [ uls, 2™ (s)1as +

t
+ [ ols, 2™ (s)law(e), (48)
0

n = 0,1,2, cee o

Conditions under which the sequence (z(n)} converges for t in a finjite in-

terval [0, T] are given by Doob ([6] IX, §5)7 and are, mainly, that the

7. Doob's treatment for K =1J = 1 can be generalized after replacing ]ml by “m”
2 =
and |o| by o] = (== Uij)2 (ef. [71, Ch. T).
id
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functions m(t, z), o(t, z) satisfy a uniform Lipschitz condition in
z, and are bounded in norm by C(1 + |z||)2 where C is some constant.
Then there exists a process {z(t), 0=t =T} with the following proper-

tiess

(1) 1im z™(¢) = 2(t) wniformly in + with probability 1,
n oo
and the z(t) process is essentially unique.

(ii) The =z(t) sample functions are almost all coptinuous in

[o, Tl.
(iii) For each t e [0, T], (U47) is true with probability 1.

(iv) If the initial value z(0) is a random variable which is
independent of the increments {w(tz) - w(tl), t, By € [o, T1}
then {z(t), 0=t =T} is a Markov process.

In addition, the z(t) process has the following local properties,
which make precise the interpretation of (45) given earlier:

(v) 1 pEtrBloz(l ) g g, o) (49)
h-0
[z, (t+h)-z; (t) 1z (t+n) - z,(t)]
(vi) lin B(— - l2t) = &
h -0 J
= rilcir(t,g)cjr(t, ¢) (50)

= bij(t,g), say; i’j ‘-:-'l, LR ] 1{.

3., Assume for the moment that the Markov process {z(t), O =t =T} con-
structed above has a transition probability density p = p(s, z; t, §),
defined for 0=ss <t =T amd 2z, §¢ RK. It would be convenient if the
hypotheses made on m and o (strengthened to include the differentiability
needed below) guaranteed that the density p exists and satisfies the
Kolmogorov equations
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K K

o) 1

S8t A ) 5‘2r+ Zm (o DF (51)
.13 z 2—5—2 b, (6, 0)2] = = <2 [ (0] (52)
€ 72,5 jo1 98498y 14 11 9% 17

Unfortunately it does not seem possible to establish (51) and (52) without
meking & priori assumptions on the smoothness of p (see the discussion in
[6] VI, §3). Nevertheless, if the z(t) process obtained by solving the
Tto equation (#5) has a transition density which satisfies the Kolmogorov
equations, then the coefficients which appear in the latter are related to
the functions m and o of the Ito equation according to (49) = (52) above.
Used heuristically, this correspondence between (45) and (51), (52) is con-

venient in engineering applications (see e.g. [101]).

w

k. The following example~ shows that Ito equations cannot be manipulated
by the ordimary rules of integration (cf. also [6], p. LL43). Iet (w(t), t = 0}
be a Wiener process in RY  with P{w(0) = 0} = 1. Let

z(t) = ew(t), t 2 0. (53)

It can be shown that the z(t) process can be represented as the solution of
an Ito equation (45). From (49), (50) we find

m(t) =5 ¢
(54)
o(t) = ¢
so that
aa(t) = 5 z(t)at + z(t)aw(t), t 20, (55)

8. Suggested to the writer by H. J. Kushner.
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with initial condition P{z(0) = 1} = 1. On the other hand if (55) is re-
placed by

t-divah, 200 =1, (56)

and the last equation integrated formally, the result is

%‘t + w(t)
z(t) = e . (57)

5. It is useful to know under what conditions a given process (¥(t), t = 0}
can be represented as the solution of an Tto equation (45) or equivalently
of the integral equation (#7). Ome such representation theorem is given by
Doob ([6] VI, Thm. 3.3). We will state here a slightly specialized version
of a theorem of Dynkin ([7], Thm. 7.2).

Theorem. Let the process {z(t), t = 0} satisfy an integral equation of
form (47) [in particular we can have z(t) = w(t)] and let ¢ = o(t, ¢)

be a numerical function, twice continuously differentiable in (t, {) for

tz0 aﬂ ¢ in gE, Put ¥(t) = @lt, z(t)]. Then the process

{¥(t), t 2 0} satisfies the integral equation

t
¥(t) = ¥(0) + fo m(s, z(s)lds +

(58)
* 3 5ls a(e)lav (o)
+ % s, z(s)law_(s).
fO r=1 °r r
The functions m and gr are given by
~ t X o, 8
t, = 2 s
B(t, ¢) Ma’t_ﬁ*ifl Pp—ay (e, ©) v
(59)
K K .2
+2 5 = %JRQEL-EI b, (t, ),
2 3.1 j=1 9% 98y 1% 0

where
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Jd
bi,j(t’ g) = rflclr(t) g)cjr(t’ C)s (60)
and
K
EQ(t, t) = iz& Qgg%:_gl oir(t, )y, T=1, eauy d. (61)

Eq. (58) is (by definition) equivalent to the stochastic differential
equation

J
ay(t) = mlt, z(t)] at + = E;[t, z(t) law_(t). (62)
r=1

Eq. (62) is more general than (45) in the sense that m and the S} may not
be expressible as functions of (t, ¥); however, by adjoining (62) to (45) we
obtain a new system of the same type as before,

Fimmlly, it is seen that (62) can also be written

K
ay(t) = mlt, z(t)] at + = iﬂ‘i&—z@l dz, (t) (62*)

i=1 i

which exhibits the ‘chain rule' explicitly.
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Appendix 2. Derivation of (5).

Iet t >0 be fixed and put s5_ = rt/n, r=0,1, ..., n. It will
be verified that f:j(t), defined by

p.(t) = l.i.m. P{x =a |y(s_), r=0,1, ..., n}, (63)
J now J rn
is given by the expression on the right side of 6)) s and then that f) J(t) is
actually the conditional probability p J(t) defined by (4). Put

Ty = y(sm) - y(sr-l,n)’ (r=1, ...y n3 n=1,2, ,..). Then from (1)
rb/n

e = Xt/n + [ (o)t /ns(s)dw(s). (64)

Thus for each n the random variables n_ - xt/n, r

pA &4

1’ ssey n’ are

independent and Geussian with mean O and variance

rt/n 5
= ds. 65
Vo =7 (o1}t /ns(s) (65)
Defining
ﬁj(n)(t) = P{x = ajly(sm), r=0,1, ..., n}, (66)
we have
gj(n)(t) = P{x = ajlnm, r=1, ..., n}

n 2 -1
pJ(O)exp[- rfl(nm - ajt/n) (v )71

K 2 2 ~1
Z P, (0)expl- riil(nm - at/n)" (v )77]

n n
pj(O)exp[aj b (rt/n)v'l -a° 3 (t/n)z(evm)'l]

_ r=lnrn m J r=1

) n 1 2 - 2 1, (6n)
5 p,(0)expl L _(rt/n)v_- -aS x (t/n)(ov. )]
k=lk a'kr=lrn / rn kr:l(/) ( rn)
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By definition of the stochastic integrel ([6] IX, §2) and the continuity
of 3(s)‘2, 0 £s =t, there follows

2 b -2
l.ium. X nrn(rt/h)vrn = [ B(s) “ay(s) (68)
n o r=l 0
and
2 2 -1 ® -2
lim % (t/n) v;n = [ B(s) “as. (69)
n o r=l 0

From (67)-(69) it follows that ﬁj(t) coincides with the expression given by
(5). It is clear tnat the same result is obtained with any sequence

{srn} such that 0 =s_ <8, < ... <s =t (n =1,2, ...), and

1

mx (s_ -5 -0 as n -,
1srsn ™ r-l,n

Iet:j?l be the smallest Borel field with respect to which the random
variables y(s), O s =+t, are measurable, To see that ﬁj(t) = pj(t)

s

note first that ﬁj(t) is certainly measurable relativi to E?%. Now suppose
that O = s, =t and that Av is a Borel subset of R, v =1, ..., N,

If A is the event [y(sv) €A, v=1, e, N] then by adjoining the

s,'s to each of the sets CRTPRRET S.n) (n = 1,2, ...), and including

the y(sv) as conditioning variables in (66), we can write

f ﬁ.(n)(t)dP =PAlx =a.,]}, n=1,2, ... . (70)
A J d

Since ﬁj(n) —;ﬁj(t) in the mean we obtain, on letting n - =,

f i;j(t)dP = P(alx = a.l]. (71)
A J

Since (71) holds for every A of the form described, it holds for every A
in the Borel field ZF_ (cf. [6] I, §7). That is, we have verified thet
ﬁj(t) has the defining properties of the conditional probability pj(t).
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Appendix 3. Properties of the p(t) process (5).

A simple computation from (5) shows that, for 0 <7 <+,

t t
py(v)expla, J B(s)™ay(s) - 5 a3 [ B(s) as]
py(t) = ¢ — - . (72)
% p, (v)expla, [ B(s)ay(s) - 5 af [ B(s)as]
k=1 T T

Consider the joimt process {x, p(t), t 2 0} where x is regarded
as a fixed random variable with distribution {pj(O)}. From (72), the vector
p(t) depends only on x, p(t), and the w(s) increments for T <s < t.
The latter increments are independent of p(t), and of x and the w(s)
increments for 0 <s <7T, on which p(r) depends. It follows that the
c onditional distribution of x, p(t) given x, p(s), o =s =7, is a func-

tion of x, p(tT) alone; that is, the process ({x, p(t), t = 0} is Markov.

The stochastic differential equation (7) for the p(t) process can be
established by applying either a representation theorem of Doob([6] VI,
Thm. 3.3) or a related theorem of Dynkin ([7], Thm. 7.2). 1In either case the
theorem mentioned must be extended slightly to take account of the fact that
only the p(t)-component of the joinmt (x, p(t)} process is of diffusion
type (alternmatively the constant component x can be regarded as a trivial
dirfusion process). We shall apply Dynkin's theorem, extended to the present
case. From (5) we see that pj(t) is of the form

pj(t) = o5t 2(%)] (73)
where

t
z2(t) = J p(s) Cay(s)
0 (74)
t -2 t -]
= [ xB(s)™"ds + [ B(s) daw(s)
0 0



and
t
1l 2 -2
p.(0O)expla .z ~ 5 a5 [ p(s)ds]
¢j(t,z)=% J 2‘]0(

t
% Pk('O)exp[akz- % ai f B(s)"2ds]
k=1 o)

. (75)

Since ¢J.(t, z) 1is twice continuously differentiable in (t, z), there
follows (Appendix 1 or [7], Thm. 7.2)

t t
pj(t) - pJ.(O) = [ mj[s, x, p(s)lds + [ aj[s, x, p(s)law(s). (76)
0 0 i

The functions mj, cj are given by

m (8, %, B) = 5 0,1, 2) + %B(6) " & 0 (¢, 2) +
) (77)
1 -2 9
+ 5 B(t) g;e ¢j(t’ z)
and
0,8, %, 2) = B(8)™ & 0 (¢, 2). (78)

The probabilistic meaning of g, O is expressed by (7) and (8). The ex-
pressions (9) and (10) are computed directly from (75), (77) and (78). Finally,
the stochastic differential equation (12) is equivalent (by definition) to the
integral equation (76).
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Appendix 4, Derivation of (21).

1. We first evaluate pj(t). To simplify the writing of certain condi-
tional expectations it is convenient to adjoin to the probability space of
the {x(t), w(t)) process, a ‘dummy' step process (x(t), t 2 0}, defined
to have the same range, initial distribution and transition probabilities
as the x(t) process, but independent of {x(t)} and (w(t)].

Now let s_ = rt/n (r=0,1, ooy n3 n=1,2, ...} and put

Ny = Y(6,) = ¥(s.; )
rt/n

En = J x(s)ds (19)
(r-1)t/n

. rt/n

g = x(s)ds.

By (19),
rt/n
Ny = €y B(s)aw(s);
moTm (et /n
and for each fixed n the random variables n_ - £ (r=1, ..., n) are

independent and Gaussian with mean (0 and variance

rt/n
v_ =] B(s)as. (80)
(r-1)t/n

Using this fact we can write

pj(n)(t) 4 pix(t) a,ly(sp), ©=0,1, «uv, m)

= Plx(t) =8;ln, r=1, ..., n} (81)
K n 2 -1
% p; (0)p, ,(6)E(exp[- 2 (e, - &,)%(2v,) Hxg=;, x=ay), o
_ i=1 r=1 rn_‘rn
K K *

n
2 -1
£ 2 p,(0)p;, (£)Blexpl- = (e - €. )7(2v, ) Hx =, x=a}, _ .
k=1 i=1 r=1 b s} m
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In (81) the c are arbitrary real numbers and the conditional
expectation is regarded as a function of the Con evaluated at the (random)

argument point ¢ =n_ (r =1, +u., n). From now on a normalizing

factor will be denoted by the generic symbol N. Then

n
2 _-1
z grn rn]I

K
P-(n)(t) N Z Pi(O)p (t)E{expl Z c. & v -1 _1
J _l r=1
(82)

rn®rn'rn 2
i=1

o]
=
-
ct
[
(]
|
=

L]
rn

By our assumptions on the =X(t) process, (82) can also be written

K n n
(n) -1 1 L2 -1
i (¢) =¥ =p. (0)p; (t)E(exp[ by nrngrnvrn 5 =z gmvm]l
i=1 r=1 r=1 (85)
Xy =855 Xy = 85 Mygs eees Nonl *

Since almost every g(t) sample function is a step function, the limit

o op

lim X &
rn rn
n —»o r=l

f B(s) 2% (s)"as (84)

exists with probability 1 and hence, by dominated convergence, in mean square,

Further n N n N rt/h

zlnrngrn ™m ri’l[grngrn +tE f(r-l)t/nﬁ(S)dW(S)]v

t 5 N
- fOB(S)— x(s)x(s)ds +
t 1~

t D
= foﬁ(s) =%(s)dy(s), (8)

where the integral with respect to w is a limit in mean square ([6] IX, §2).
Let en(t) be the random variable in [ ] in (83) and put

t t
ot) = [ p(e)” %(s)%as - 2 foﬁ(sr%?(s)dy(s). (86)

From (84) and (85), l.i.m. en(t) = 6(t). Furthermore




- 5.

een(t) _ ee(t)l

HA

6_(t)
Lig (t) - o) |[e ™ +oOt)]

A

lo_() - o(t) |21+t

for some constants A, p > 0; and since E[[e”w(t)l] } <w

6 (¢
loium. e a(*) O

n —->o

(87)

( ..
Denote by -yil (resp. ?[t) the smallest Borel field relative to

which the random variables x(0), x(t), Mp? *+*s Ty (Tesp. x(0), x(t),
y(s), 0 = s =t) are measurable. Now

t)
Efe nl II‘H - r(ef(t) f )
6_(t) =~ 6 (t
= E{e n()IJ:}—E{e ( )|'>7}+ (88)
6,(t) o
+ Efe © |J7ft} O \7,;}.
Since gn C ?t and since, by inspection of en(t), the random variable
6 (t) G- vf
Ele ™ | ¢) 1is measurable relative to (/L 2, there follows ([6] I, Thm.
8.1)
e L (8) o (t)
1F2 e ™ | Fy=o0 (89)
with probability 1. Finally, (87) implies
g (t)
l.i.m. E{e © IJZ } - E{ee(t)léZ } =0. (90)

n —»o

Thus we have shown that
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. n X o(t
i'i’i' pj( TORES: iflpi(o)pij(t)E(e ( )|

(91)
x(0) = a,, X(t) = a.J.; v(s), 0 s s = t}.

By exactly the same argument as in Appendix 1 the right side of (91) can be
identified with p j(t).

2. Next we derive the Markov property. For O =T =t write

t t
9(r, t) = expl [ B(s) ™% (s)%as - 5 [ B(s) K (s)ay(s) ], (92)
T T

and let :}{:’ be the smallest Borel field relative to which the random vari-
ables y(s), T ss st, are measurable., Thus ¢(T, t) is measurable rela-
tive to the Borel field generated by }:1’:’ and the ;c'(s)'s for 7T £s = t,
With this notation

K
~ ~ - t
py(t) = N i__2_:_11z>i(0)pij('c)E{<p(o,t) %, =835 %, = a5 HJIe (93)
Now
K ~ ~ - t+h
pj(t+h) =N kflpk(o)pkj(t+h)E{q>(O,t+h) Ixo = ak’ x—t+h = a’J’ J-{O }
K K ~ ~o
=N =Zp (0)p, .{t+h) = P = = X =a.
ol i (O)Py 5 € )1=1 Grg = oy lx, = ey, Xy = ay)

. S v ~ _ t+h
E(@(0,8)p(t,t4h) [x, = 8y, X =85, Xy, =2, M )

K K
N - -
ifl kflpl\:(o)pk]- (t)pij(h)E{‘P(O,t) lx, =&, x =a,H)

© Elp(t,t4h) [, = 8y, Xy = ay, oy, (9k)

where we have used the fact that the ;{(t) process is Markov and is indepen-

dent of the y(t) process. Comparing (93) and (94) we obtain
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K
Pj(t"'h) =N i_z_:lpi(t)Pij(h)E{q)(t’ t+h) Ixt = ai’ Xiah = a’j) :){

by (95)
t

write p(t) = [pl(t), coey pk(t)] and consider the joint process
{x(t), p(t), t 2 0}. Eas. (92) and (95) show that x(t + h), p(t + h)
depend only on x(t), p(t) and on the w(s) increments for t S s =t + h,

Reasoning as on Appendix 2 we conclude that the joint process

{(x(t), p(t), t 2 0} is Markov.

3 We now evaluate functions m, and bij defined by
p,(t+n) - p,(t)
mj(t’) X, p) = lim E{ B x(t) = X, p(t) = p} (96)
h -0
and
[p. (t+h) - p,(t)1[p.(t+h) - p.(t)]
bij(t’x’P) = lim E( = = h J <l
B =0 (97)

x(t) =x, »p(t) = pl.

To simplify computation note that the conditional expectation in (95)

is readily evaluated, given the extre condition that no jump of ;c'( «) occurs

in the interval (t, t + h); and the conditional probability that no jump

~s o
occurs iven x, =X =a is
> € t = Xg4n T Bp0

- v;h
Py T =140 (a-0), (98)

Also, since B(s)-:L is assumed bounded, we have

®(t, t + 1) s e(n)e P (99)
where Ay = y(t+h) - y(t), A > 0 is constant and f(h) is bounded as h - O.
t+h t+h
-2 1. 2 -
6, =a, ] B(s)Tay(s) -58,° J B(s) s, (100)
t t .

Put
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From (92) and (98)-(100),

o~

8,
t+h
E(Q(t, tHh)Ry=8,, X, =85, Hy 3 =e  +ho(h) (101)
and if j #£1

E[(P(’t, t+h) Ix-t =85 Xeun T aj) t)—“b } = a)ij(h) (102)

where (for a suitable f(+))

0 5w, (b), ® 4(n) = £(n)e* Iyl (10%)
Thus
0. K
py(o#1) = Np () () (e ? + tmy(m)) + 3 9, (0)py (g () - (104)
i=1

A simple calculation from (100) yields

1im hE(e.|x(t) = x} = a xB(t)™° - = aZp(t) " (105)
h -0 J J 2d

: - -2
hl:mo h ]E[eiej [x(t) = x} = aiajﬁ(t) . (106)

Using (104)-(106) it is now straightforward to compute the limits (96) and
(97). The results are

X
my(t5%,0) = = v+ 3 vy + BTl - D)ay - Xy (0)
i£)

and

b, ,(t,%,0) = (B(t) " (ay - B)p; 1B(6) ™ (2 ;)p ] (108)




where
- K
X = if a,p;. (109)
L, Define
Uj(t: X, p) = B(t)-l(aj - ;)Pj’ J=1, «ec, Ko (110)

It will be shown that the p(t) process can be represented as the
solution of the stochastic differential system

dps(t) = mylt, x(t), p(t)lat + o,lt, x(t), p(t)law(t);
(111)
20, J=1, eeey K;

where ({w(t), t 2 0} 1is the Wiener process introduced in (19). We shall
apply a representation theorem of Doob ([6] VI, Thm. 3.3), generalized to
allow for the fact that only the p(t) component of the (x(t), p(t)} pro-
cess is continuous (that almost every p(t) sample function is continuous
follows from (104)).

The p(t) process is obviously bounded; hence the conditions usuwally
imposed on m and o ([6] VI, §3) are satisfied. Now let Qt be the
smallest Borel field with respect to which the random variables x(s), p(s),
0 =s =1 are measurable. Then, since the {x, p} process is Markov, the
evaluations (107), (108) are unchanged if the conditiomal expectations in
(96), (97) are defined relative to @t. Reasoning as in the proof of [6]
VI, Thm. 3.3, we conclude that each process

t
{Pj(t) - Pj(o) -f m.[s,x(s), p(s)]d.s, @ti t 20}, j=1, «.., K, (]J_2)
0 J

is a martingale which satisfies the conditions of [6] IX, Thm. 5.3. That is,
if {p (t), %t’ 2 0} 1is the martingale defined by (112), Py and if

{0'3} -1 =0y -1 (or O) where o5 #0 (or 0), then the equa.tlon
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t
W(&) = [ (o,ls, x(s), p(s)1)7a5,(s) (113)
0

defines a Wiener process; and by (108), (110) this definition of the W(t)
process is independent of the choice of J.

It remains to identify the W(t) process with the w(t) process of
(19). 1et

t

y(t) = y(t) - fo x(s )ds

1

. (11)
= [ B(s)aw(s).
0
Using (104) - (106) and (110) we find that
Ln TB(F(om) - F(6) ey (60) - py(8)1] G )
h -0 J (115)

= B(t)ﬂ’j(t: x(t), p(t)].

Reasoning as before we conclude that the process {;(t), gt; t 20} is a
mrtingale, Since

t
w(t) = fos(s)‘ldi‘r'(s)
it follows by (113) and (115) that
E([w(t) = w(s)1[(t) = %(s)1|§ .} =t -5, 0<s<t. (116)
Hence for each t >0, w(t) = w(t) with probability 1; by continuity this

implies that the processes W(t), w(t) are essentially identical. The inte-
grated form of (21) now follows fram (113) by inversion.
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